EXERCISES

Try to do each task in less than 4 minutes

1. A particle moves from A to B. Vector position of A and B are $\mathbf{r}_{A}=3 i+j$ and $r_{B}=$ $11 \mathrm{i}+7 \mathrm{j}$ respectively. Determine the magnitude and the direction of the displacement that is done by the particle!
2. A cat runs on across a parking lot where a coordinate drawn on it. The position of the cat is expressed by $r=\left(2 t^{2}+1\right) i+(3 t-4) j$. Find the velocity of the cat and its magnitude at $\mathrm{t}=1 \mathrm{~s}$!
3. Initial position of a rat is at $(2,3)$. After moving for 10 s , its position is at $(7,15)$. Find the average velocity of the rat during that interval of time!
4. A particle moves on a plane and its position is expressed by $x=3 t^{2}+4$ and $y=$ $2 t^{3}+t^{2}+7$. Find the velocity of the particle at $t=2 \mathrm{~s}!$
5. A particle travels along x axis and its position is expressed by $x=10 t^{3}+5 t^{2}+2 t+$ 1 where x is in meter. Find position of the particle when its velocity is $142 \mathrm{~m} / \mathrm{s}$!
6. A car moves on a straight line and its velocity is expressed by $v=(2 t+3) \mathrm{m} / \mathrm{s}$. at t $=0 \mathrm{~s}$ the car is at origin. Find the distance that is covered by the car after moving for 2 s !
7. A stone is thrown vertically with a certain velocity. Its instantaneous position above the ground is expressed by $y=10 t-5 t^{2}$. Find :
a. Initial velocity of the stone
b. The time that is needed to reach the highest point
c. The highest point that can be reached by the stone
8. An electron is initially moving at the velocity of $100 \mathrm{~m} / \mathrm{s}$. As the force exerted on it, the electron is decelerated and its deceleration is expressed by a $=(2-10 \mathrm{t})$ $\mathrm{m} / \mathrm{s}^{2}$. Find the velocity of the electron after the force is exerted for 4 s !
